The Linear Delta Expansion and the Anharmonic Oscillator

H. F. Jones

Imperial College London
Plan of Talk

1. Shortcomings of Perturbation Theory

2. Linear Delta Expansion

3. LDE in [0] \((\int e^{-gx^4} dx)\)

4. LDE in [1] (AHO)

5. AHO Wave Function
1. Shortcomings of Perturbation Theory

(a)

- Conv\textsuperscript{\textit{n}L} perturb\textsuperscript{\textit{n}} series = Taylor series in \(g \)

- \(\therefore \) cannot produce non-analytic behaviour, such as \(\sqrt{g} \)

- Can't reproduce instanton-like behaviour like \(e^{-c/g^2} \). Taylor expansion \(\equiv 0! \)
(b)

- Even if series exists, only applicable for weak coupling

- In QFT running coupling constant is large at low energies

(c)

- Even for \(g \ll 1 \), perturbation series is asymptotic rather than convergent
Note:

In context of functional \int formula of QFT, problem arises \therefore expansion of integrand in

$$\int [d\varphi] \exp(-g S_{\text{int}}[\varphi])$$

not uniformly convergent. Hence interchange of Σ and \int not justified†

†S. A. Pernice and G. Oleaga,
2. Linear Delta Expansion

Essential idea

AHO (ϕ^4 theory in [1]):

$$H = \frac{1}{2}(p^2 + m^2 x^2) + g x^4 = H_0 + H_1 \quad (2.1)$$

Normal perturbation theory = expansion in H_1, i.e. g, giving an asymptotic series. E.g., expansion for ground-state energy is $E_0 = \sum c_n g^n$, where†

$$c_n \sim (-1)^{n+1} \frac{\sqrt{6}}{\pi^{3/2}} 3^n \Gamma(n + 1/2)$$

†C. M. Bender and T. T. Wu, *Phys. Rev.* D7 (1973) 1620
In above, split between H_0 and H_I is fixed once and for all. Essence of LDE is that split changes (in an appropriate way) with the expansion order.

In particular, can add an additional mass term to H_0 and subtract it from H_I, to obtain

$$H_\delta = \frac{1}{2}(p^2 + \mu^2 x^2) + \delta(gx^4 - \lambda x^2) = H'_0 + H'_I \quad (2.2)$$

where $\mu^2 = m^2 + 2\lambda$, and δ is a dummy book-keeping parameter, to be set equal to 1 at end.

For $\delta \neq 1$, H_δ depends on parameter λ, which does not appear in original Hamiltonian H. Exact calculation with $H_{\delta=1}$ would not depend on λ, but any truncated expansion will contain a residual λ dependence.
So how to fix λ? Most frequently used criterion is the Principle of Minimal Sensitivity (PMS)†:

$$\frac{\partial R_N}{\partial \lambda} = 0,$$

where $R_N = N$th-order expansion of some quantity R. This mimics, at least locally, independence of exact result on λ

†P. M. Stevenson,
N.B. This makes λ order-dependent:

$$\lambda = \lambda_N$$

This is crucial property that can give a convergent sequence. For *fixed* λ, expansion will share bad properties of perturbation theory.
Problems with PMS:

(i) No justification, other than “reasonableness”

(ii) May \exists several stationary points. How to distinguish between them?

Partial answers:

(i) in some simple cases, can prove that PMS guarantees convergence

(ii) choose broadest maximum/minimum
3. LDE in [0] ($\int e^{-gx^4} \, dx$)

[0] analogue of φ^4 fn \int is

$$Z \equiv \int_{-\infty}^{\infty} e^{-\frac{1}{2}m^2x^2-gx^4} \, dx \quad (2.1)$$

N.B. For $m = 0$, $Z = \frac{\Gamma(1/4)}{(2g^{1/4})}$. Non-analytic, \therefore no Taylor series!

Tackle this case, and define

$$Z(\delta) = \int_{-\infty}^{\infty} e^{-\lambda x^2+\delta(\lambda x^2-gx^4)} \, dx$$

$$= \int_{-\infty}^{\infty} dx e^{-\lambda x^2} \sum_{n=0}^{\infty} \frac{\delta^n}{n!} (\lambda x^2 - gx^4)^n \quad (2.2)$$

$$= \sum_{n} c_n(\lambda)\delta^n$$
(i) How does method give correct non-analytic behaviour in g?
Well, \therefore PMS.
E.g. 1st-order result is

$$Z_1(\delta) = \sqrt{\frac{\pi}{\lambda}} \left[1 + \delta \left(\frac{1}{2} - \frac{3g}{4\lambda^2} \right) \right]$$

For fixed λ this is a polynomial in g

But PMS condn sets $\lambda = \lambda_1 = (5g/2)^{1/2}$, and then

$$Z_1 = \frac{6}{5} \left(\frac{2\pi^2}{5g} \right)^{1/4}$$
(ii) Again, for fixed λ, large-n behaviour of c_n is

$$c_n \sim (-1)^n \frac{g^n e^{-n}}{\lambda^{2n+1/2}} 4^n n^{n-1/2}$$

Alternates in sign and grows like $n^{n-1/2}$

But with PMS, divergence tamed by growth of λ_n

(iii) Very instructive to plot $Z_N(\lambda)$ against λ for odd N [$\not\exists$ soln of PMS cond^n for even N]
Note:

(i) \(\exists \) single maximum, which is less than the true value. Can prove this

(ii) \(\text{Pos}^n \) of maximum, \(\lambda_N \), increases with \(N \) (as \(\sqrt{N} \)). Max gets broader as \(N \) increases

(iii) For fixed \(\lambda \), as \(N \) increases \(Z_N(\lambda) \) eventually diverges, tending to \(-\infty \).

Turns out that maximum increases monotonically to true answer. Can show that error \(R_N := Z - Z_N(\lambda_N) \sim e^{-\#N} \)
Coefficients

What does PMS do to coefficients?

- for fixed λ, $c_n \sim (-gn)^n$ at large n (saddle-point method/recursion relations)

- but for $\lambda = \lambda_N$, c_n all have same sign, and decrease rapidly up to $n = N$ (bad behaviour occurs for $n > N$)
\(N = 11 \)

\[
\begin{array}{cccc}
\hline
\mathcal{C}_N & \lambda = 1 & \lambda = \lambda_{11} \\
\hline
\mathcal{C}_1 & -0.4 & 0.4025 \\
\mathcal{C}_2 & 3.1 & 0.2395 \\
\mathcal{C}_3 & -27.1 & 0.1395 \\
\mathcal{C}_4 & 336.6 & 0.0756 \\
\mathcal{C}_5 & -5498.6 & 0.0376 \\
\mathcal{C}_6 & 111471.8 & 0.0171 \\
\mathcal{C}_7 & -2700994.1 & 0.0072 \\
\mathcal{C}_8 & 76166358.6 & 0.0028 \\
\mathcal{C}_9 & \ldots & 0.0010 \\
\mathcal{C}_{10} & \ldots & 0.0003 \\
\mathcal{C}_{11} & \ldots & 0.0001 \\
\hline
\end{array}
\]
Convergence

Proof of convergence, using saddle-point methods

(i) Bound on Z_N

Easy to show that $Z_N < Z$ for N odd, but not for N even

Thus

$$Z_N = \int dx \, e^{-\lambda x^2} \left\{ e^{(\lambda x^2 - gx^4)} \right\}_N,$$

where $\{\ldots\}_N$ means series truncated at Nth term

†I. R. C. Buckley, A. Duncan and HFJ,
Rewrite as

\[Z_N = \int dx \ e^{-gx^4} e^{-(\lambda x^2-gx^4)} \left\{ e^{(\lambda x^2-gx^4)} \right\}_N \]

\[= \int dx \ e^{-gx^4} \Theta_N(z), \quad (2.3) \]

where

\[\Theta_N(z) := e^{-z} \left\{ e^z \right\}_N \]
Graph shows that for \(N \) odd \(\Theta_N(z) \leq 1 \):
Can prove this by considering $d\Theta_N/dz$, to which only last term contributes:

$$\frac{d\Theta_N}{dz} = -\frac{z^N}{N!}e^{-z}$$ \hspace{1cm} (2.4)

∴ $Z_N(\lambda) < Z$ for all λ, and PMS max is best you can do
(ii) Estimate of λ_N

Eq. (2.4) involves only last term in series. \therefore\ can estimate λ_N for large N, by saddle-point methods

Thus

$$\frac{dZ_N(\lambda)}{d\lambda} = -\frac{1}{N!} \int dx \ e^{-\frac{\lambda}{2}x^2}x^2(\lambda x^2 - gx^4)^N$$

For large N, integrand looks like:
For \(\lambda_N \) need two contributions to cancel. This gives

\[
\lambda_N = \left(\frac{2Ng}{\sinh \beta} \right)^{1/2} \propto \sqrt{N},
\]

where \(\beta = 1.199678\ldots \) is solution to \(\beta = \coth \beta \).

(iii) Estimate of error \(R_N \)

Error is

\[
R_N := Z - Z_N(\lambda) = \int dx \ e^{-gx^4} (1 - \Theta_N(z))
\]

\(\int \) Eq. (2.4) from 0 to \(z \), to get

\[
1 - \Theta_N(z) = \frac{(\text{sign } z)^{N+1}}{N!} \int_{0}^{\mid z \mid} d\omega \omega^N e^{-\omega(\text{sign } z)}
\]
Integral splits into two regions:

\[A \equiv 0 \leq x \leq \sqrt{\lambda/g} \], where \(z > 0 \), and

\[B \equiv \sqrt{\lambda/g} \leq x \], where \(z < 0 \)

Writing \(R_N = A_N + B_N \), and bounding each \(\int \) separately, can show that

\[
R_N < \frac{2}{N!} \int_0^{\infty} dx \ e^{-\lambda x^2} (\lambda x^2 - gx^4)^{N+1}
\]

\[= (N + 1)c_{N+1} \]
\(c_{N+1} \) easily estimated by saddle-point integration for large \(N \), giving bound

\[
R_N < c N^{1/4} e^{-N/\sinh \beta} \approx c N^{1/4} e^{-0.663N}
\]

\[\therefore\] we have a convergent sequence of approximants, whose error decreases exponentially with \(N \)

N.B. We do not obtain a series in the conventional sense, because when \(N \) increases by 1, not only do we add an additional term, but we modify the already existing terms (\(\therefore \lambda \rightarrow \lambda_N \))
4. LDE in [1] - AHO

Direct analogue of Eq. (2.1) is partition function for AHO:

\[
Z \equiv \sum_{r=0}^{\infty} e^{-\beta E_r}
\]

\[
= \frac{1}{Z_0} \int_{x(\beta) = x(0)} \left[dx \right] e^{-\int_0^{\beta} \mathcal{L}(x(\tau)) d\tau}
\]

(4.1)

1st form good for numerical calculations

2nd form good for proof of convergence on similar (but much more complicated) lines to proof in [0]
(i) Numerics

Numerical evaln of Eq. (4.1) proceeds by first calculating energy levels \(E_r \) and then performing sum (truncated at some suitably large value of \(r \))

Equation to be solved, as an expansion in \(\delta \), is

\[
\left[\frac{1}{2} \left(-\frac{\partial^2}{\partial x^2} + \mu^2 x^2 \right) + \delta(gx^4 - \lambda x^2) \right] \psi = E\psi \tag{4.2}
\]

where \(\mu^2 = m^2 + 2\lambda \)

N.B. Usual R-S perturbation method very cumbersome, but if \(V \) is polynomial, high orders in perturbation theory can be generated very efficiently using *recursion relations*, as first noted by Bender and Wu
First scale variables:
\[
\begin{align*}
 x &= y/\sqrt{\mu} \\
 g &= \mu^3 \tilde{g} \\
 \lambda &= g \bar{\lambda}/\mu \\
 E &= \mu \tilde{E}
\end{align*}
\]

so that Schrödinger equation becomes

\[
\left[-\frac{1}{2} \frac{d^2}{dy^2} + \frac{1}{2} y^2 + \delta \tilde{g}(y^4 - \bar{\lambda}y^2)\right] \psi = \tilde{E}_n \psi
\]

Writing \(\psi = e^{-y^2/2} \varphi \), get

\[-\varphi'' + 2y \varphi' + \varphi + 2\delta \tilde{g}y^2(y^2 - \bar{\lambda}) \varphi = 2\tilde{E} \varphi
\]

Substituting \(\tilde{E} = \sum e_n \delta^n \) and \(\varphi = \sum \varphi_n \delta^n \) gives (for \(n \geq 1 \))
\[-\varphi''_n + 2y\varphi'_n + 2\tilde{g}y^2(y^2 - \tilde{\lambda})\varphi_{n-1} = 2 \sum_{\ell=0}^{n-1} e_{n-\ell}\varphi_{\ell}.\]

Finally, consistent to take \(\varphi_n = \sum_{p=0}^{4n} a_{n,p}y^p\). This gives recursion relation

\[
a_{n,p} = \frac{1}{2p} \left[(p+1)(p+2)a_{n,p} + 2 - 2\tilde{g}a_{n-1,p-4} + 2\tilde{g}\tilde{\lambda}a_{n-1,p-2} - 2 \sum_{\ell=0}^{n-1} a_{n-\ell,2} a_{\ell,p} \right]
\]

together with rel^n

\[e_n = -a_{n,2}\]
Can readily be solved using any recursive language (e.g. Mathematica, C++). Results very similar in general properties to [0] case. We† were able to go to order $N = 75$!

†A. Duncan and HFJ,
Phys. Rev. **D47** (1993) 2560
Numerically (corroborated by saddle-point estimates) we find

\[\lambda_N \sim \sqrt{N}, \quad \text{while } R_N \sim e^{-cN^{2/3}} \]
(ii) Convergence

Again main tool is Eq. (2.5) for $1 - \Theta_N(z)$, applied to $\text{fn}^\ell \int$

$$Z = \frac{1}{Z_0} \int_{x(\beta) = x(0)} [dx] e^{-S_0 - \delta(S - S_0)}$$

with

$$S_0 = \int_0^\beta \frac{1}{2}(\ddot{x}^2 + \mu^2 x^2) d\tau$$

$$S = \int_0^\beta \left[\frac{1}{2}(\ddot{x}^2 + m^2 x^2) + gx^4 \right] d\tau$$

Two regions $\mathcal{A} (S < S_0)$, and $\mathcal{B} (S > S_0)$ again have to be treated separately.
Saddle-point configuration in \mathcal{A} is a constant configuration, giving
\[A_N \sim \# N^{5/6} e^{-cN^{2/3}/\beta} \] (4.3)

while that in \mathcal{B} is a localized instanton, giving
\[B_N \sim \# N^{4/3} e^{-NS(\lambda)} \]

PMS value is obtained by finding λ such that two behaviours match, giving an overall error
\[R_N \sim \# e^{-cN^{2/3}} \]
But, factor of $1/\beta$ in exponent of (4.3) ⇒ can't take $\beta \to \infty$, essentially ∴ in QFT Z is generator of all vacuum diagrams, including disconnected ones

Problem does not occur for $W \equiv \ln Z$, generator of connected vacuum diagrams

However, expansion for W does not obey $W_N < W$, so \nexists unique PMS point. Nonetheless, proof of convergence with appropriate scaling can be constructed in both zero† and one‡ dimensions

†C. M. Bender, A. Duncan and HFJ, *Phys. Rev.* D49 (1994) 4219
‡C. Arvanitis, HFJ and C. S. Parker *Phys. Rev.* D52 (1995) 3704
Completely different approach, using dispersion relations for $E(g)$, has been used by Guida et al.† to prove convergence of LDE for the energy levels (with a suitable scaling instead of PMS)

†R. Guida, K. Konishi and H. Suzuki
5. AHO Wave-Function

Get convergence for E_n, but WF is still of form $\psi = e^{-\mu x^2/2} \varphi$, where φ is a polynomial

This is completely wrong: from Schrödinger eq

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{2} m^2 x^2 + gx^4 \right] \psi = E_n \psi$$

should have $\psi \propto e^{-\gamma |x|^3}$ asymptotically, where $\gamma = (2g)^{1/2}/3$

How to remedy this? - Strong PMS! †

$$\frac{\partial}{\partial \mu} \psi(x; \mu) = 0 \quad \text{for each } x$$

† T. Hatsuda, T. Kumihiro and T. Tanaka

This means that μ becomes a function of x

Geometrically, strong PMS cond ∇ $\frac{\partial}{\partial \mu} \psi(x; \mu) = 0$
defines envelope of series of curves given by $\psi(x; \mu)$

Simplest example is hyperbola $y = 1/x$, obtained as envelope of its tangents $y = (2\mu - x)/\mu$
To first order, WF obtained from R-S perth thy is

\[
\psi = \left\{ 1 - \delta \left[\frac{m^2 - \mu^2}{8\mu^2} (2z^2 - 1) + \frac{g}{8\mu^3} (2z^4 + 6z^2 - 9/2) \right] \right\} e^{-z^2/2}
\]

where \(z = x\sqrt{\mu} \)

Solving \(\partial \psi / \partial \mu = 0 \) gives 2 branches for \(\mu(x) \) (\(m = 1, g = 1/2 \))
Green one is sensible one, giving envelope
Superimposed on individual WFs:

Asymptotic behaviour of envelope $\Psi(x)$ is

$$\Psi(x) \sim \exp(-\frac{1}{2}|x|^3) \ (\text{vs.} \ \exp(-\frac{\sqrt{2}}{3}|x|^3))$$
Another idea†:

Write $\psi = \exp\left(-\frac{1}{2}\mu x^2 - \gamma |x|^3\right)\varphi$, to enforce correct asymptotic behaviour.

Then eqn for φ is

$$\varphi'' - 2\mu x \varphi' + (2E - \mu)\varphi = 6\gamma x^2 \varphi' + \left(-6\gamma \mu x^3 + (m^2 - \mu^2)x^2 + 6\gamma x\right) \varphi$$

- Multiply RHS by δ and do a δ expn
- Start with $\varphi^{(0)} = 1$
- In any order φ is a polynomial in x
- Fix μ_N by standard PMS: $\partial E_N/\partial \mu = 0$

†P. Amore, A. Aranda and A. De Pace

Get excellent results† (more accurate than standard LDE (N=47))

But no proof of convergence

†P. Amore et al.
5. **Summary**

LDE gives a convergent sequence of approximants for

- $Z, W \equiv \log Z$ in $[0]$

- Z, W, E in QM

Generalizations of LDE give

- good approximations for WF

- faster convergence