
Michael A. Bender

Stony Brook and TokutekR, Inc

•  I’m a theoretical computer scientist
•  Linguistic divide: Computer scientists speak

discretely and physicists speak in quanta (and
they speak continuously).

•  But I want my talk in the spirit of QMCD ’09.

Physicists Beget Computer Scientists
(Generational Divide)

My father has written papers …

…but I won’t talk about these.
Oblong geyser

with me: and my brother:

(How I View)
My Father’s Style

•  Ask simple-to-state questions about
elementary physics.

•  Extract all the richness and complexity out of
these problems
–  e.g., anharmonic oscillator, relativistic

brachistochrone, QMCD

•  These are a son’s impressions

(How I View)
My Father’s Style

•  Ask simple-to-state questions about
elementary physics.

•  Extract all the richness and complexity out of
these problems
–  e.g., anharmonic oscillator, relativistic

brachistochrone, QMCD
Where is the best

food here?

•  These are a son’s impressions

I’ve done my best to imitate this style

•  Style that I strive for.
•  Here’s my attemPT to do the same sort of thing.

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Fall 1990. I’m an undergraduate.
Insertion-Sort Lecture.

Insertion sort
is O(N logN).

Insertion sort
is O(N logN).

Anybody who has spent time in a library knows
that insertions are cheaper than linear time.

 LibrarySort [Bender,Farach-Colton,Mosteiro 04] :

 O(N logN) sorting for average-case insertions.

How is LibrarySort like a library?

•  Leave gaps on shelves so shelving is fast
•  Putting books randomly on shelves with gaps: At

most O(logN) books need to be moved with high
probability* to make room for a new book.

* Probability >1-1/poly(N), N=#books.

But what if Library buys many copies of….

•  Bender and Orszag
•  Bender and Orszag, 2nd Ed.
•  Bender, and Orszag, 3rd Ed.

•  Bender and Orszag, 500th Ed.
•  Books by other Benders
•  Bender & Orszag, Volume II (?)

•  Now there’s a bolus of books on in one place.
Can we still tiny shelving costs?

…
…

But what if Library buys many copies of…?

•  Bender and Orszag
•  Bender and Orszag, 2nd Ed.
•  Bender, and Orszag, 3rd Ed.

•  Bender and Orszag, 500th Ed.
•  Books by other Benders
•  Bender & Orszag, Volume II (?)

•  Now there’s a bolus of books on in one place.
Can we still tiny shelving costs?

…
…

But what if Library buys many copies of….

•  Bender and Orszag
•  Bender and Orszag, 2nd Ed.
•  Bender, and Orszag, 3rd Ed.

•  Bender and Orszag, 500th Ed.
•  Books by other Benders
•  Bender & Orszag, Volume II (?)

•  Now there’s a bolus of books on in one place.
Can we still tiny shelving costs?

…
…

But what if Library buys many copies of….

•  Bender and Orszag
•  Bender and Orszag, 2nd Ed.
•  Bender, and Orszag, 3rd Ed.

•  Bender and Orszag, 500th Ed.
•  Books by other Benders
•  Bender & Orszag, Volume II (?)

 Now there’s a bolus of books on in one place.
Can we still support tiny shelving costs?

…
…

But what if Library buys many copies of….

•  Bender and Orszag
•  Bender and Orszag, 2nd Ed.
•  Bender, and Orszag, 3rd Ed.

•  Bender and Orszag, 500th Ed.
•  Books by other Benders
•  Bender & Orszag, Volume II (?)

 Now there’s a bolus of books on in one place.
Can one still maintain small shelving costs?

…
…

Insertions into Array with Gaps
•  Dynamically maintain elements sorted in

memory/on disk in a -sized array

•  Objective: Minimize amortized (technical
form of ave) # of elts moved per update.

•  Idea: rearrange elements & gaps to accommodate
future insertions

Actually Two Objectives

•  Minimize # elements moved per insert.

•  Minimize # block transfers per insert.

•  Disk Access Model (DAM) of Computer
–  Two levels of memory
–  Two parameters:

 block size B, memory size M.

Remember that I’m a computer scientist….

•  (Worst-case) Inserts/Deletes:
–  O(log2N) amortized element moves
–  O(1+(log2N)/B) amortized memory transfers

•  Scans of k elements after given element:
–  O(1+k/B) memory transfers

Head insert:
O(log2N)

Random
insertion

Problem: a worst case for PMA is sequential inserts, but this
is a common case for databases. Industrial data structures
(Oracle, TokuDB) are optimized for sequential inserts.

An Adaptive PMA
[Bender, Hu 2007]

•  Same guarantees as PMA:
 O(log2N) element moves per insert/delete
 O(1+(log2N)/B) memory transfers

•  Optimized for common insertion patterns:
 insert-at-head (sequential inserts)
 random inserts
 bulk inserts (repeatedly insert O(N b) elements in

 random position, 0≤b ≤1)
Guarantees:
 O(logN) element moves
 O(1+(logN)/B) mem transfers

Sequential Inserts
Inserts “hammer” on one part of the array.

 Random Inserts
Insertions are after random elements.

Sample Applications

Maintain data physically in order on disk
•  Traditional and “cache-oblivious” B-trees

–  Core of all databases and file systems
•  My startup Tokutek
•  Even an online dating website

•  Try to insert in log N –sized interval.
•  If interval already full, rebalance smallest
 enclosing interval within thresholds.

•  Try to insert in leaf interval.
•  If interval full, rebalance smallest enclosing
 interval within thresholds.

Analysis Idea: O(log2N) amortized
element moves per insert

•  O(logN) amort. moves to insert into interval
–  Amortized analysis: Charge rebalance of interval u to

inserts into child interval v
•  Insert in O(logN) intervals for insert in PMA

Analysis Summary

•  Charge rebalance cost of u to inserts into v
–  After rebalance v within threshold of parent u

•  Amortized cost of O(logN) to insert into u
•  But each insert is into O(logN) intervals

•  Total: O(log2N) amortized moves

Analysis Summary

•  Charge rebalance cost of u to inserts into v
–  After rebalance v within threshold of parent u

•  Amortized cost of O(logN) to insert into u
•  But each insert is into O(logN) intervals

•  Total: O(log2N) amortized moves

Idea of Adaptive PMA
⇒ But no working-set property of the “right” predicto
•  Adaptively remember elements that have many

recent inserts nearby.
•  Rebalance unevenly.

Add extra space near these volatile elements.

•  This strategy overcomes a Ω(log2N) lower bound
[Dietz, Sieferas, Zhang 94] for “smooth” rebalances

Why O(log2N) Can Be Improved in
the Common Case.
To guarantee O(log2N), we only need….

 Rebalance Property: After a rebalance involving v,
v is within parent u ’s density threshold.

Summary: As long as v is within u ’s threshold, it can
be sparser or denser than t ’s density thresholds.

Why O(log2N) Can Be Improved in
the Common Case.
To guarantee O(log2N), we only need….

 Rebalance Property: After a rebalance involving v,
v is within parent u ’s density threshold.

Summary: Remarkable that this is good enough.
Only large rebalances have slop and most are small.

How to Remember Hot
Elements Adaptively

•  Maintain an O(logN)-sized predictor, which
keeps track of PMA regions with recent inserts
–  O(logN) counters, each up to O(logN).
–  Remembers up to O(logN) hotspot elements.
–  Tolerates “random noise” in inputs.

⇒ Good for many distributions.
⇒ But no working-set property of the “right” predictor. •  (Generalization of how to find majority element in
an array with a single counter.)

•  Rebalance to even out weight of counters,
while maintaining rebalance property.

Summary
•  Insertion sort with gaps

–  LibrarySort [Bender,Farach,Colton,Mosteiro ‘04] (+ Wikipedia entry)
•  Worst-possible inserts

–  PMA [Bender,Demaine,Farach-Colton ’00,’05]
–  Cache-oblivious B-trees and other data structures

•  Adapt to common distributions
–  APMA [Bender,Demaine,Farach-Colton ’00,’05]

•  Implementation of cache-oblivious data structures
–  Tokutek

•  Is it practical to keep data physically
in order in memory/on disk?

Speaking for B-trees…
I believe yes.

Vista Panoramica de la Platica

