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•  I’m a theoretical computer scientist 
•  Linguistic divide: Computer scientists speak 

discretely and physicists speak in quanta (and 
they speak continuously).  

•  But I want my talk in the spirit of QMCD ’09. 

Physicists Beget Computer Scientists 
(Generational Divide) 



My father has written papers … 

…but I won’t talk about these. 
Oblong geyser 

with me:                                and my brother:  



(How I View)  
My Father’s Style   

•  Ask simple-to-state questions about 
elementary physics.  

•  Extract all the richness and complexity out of 
these problems 
–  e.g., anharmonic oscillator, relativistic 

brachistochrone, QMCD 

•  These are a son’s impressions 
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•  Ask simple-to-state questions about 
elementary physics.  

•  Extract all the richness and complexity out of 
these problems 
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food here?   
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I’ve done my best to imitate this style 

•  Style that I strive for.   
•  Here’s my attemPT to do the same sort of thing.  



Fall 1990. I’m an undergraduate. 
Insertion-Sort Lecture.  
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Insertion sort 
is O(N logN). 

Insertion sort 
is O(N logN). 

Anybody who has spent time in a library knows 
that insertions are cheaper than linear time. 

  LibrarySort [Bender,Farach-Colton,Mosteiro 04] :  

     O(N logN) sorting for average-case insertions.  



How is LibrarySort like a library? 

•  Leave gaps on shelves so shelving is fast  
•  Putting books randomly on shelves with gaps: At 

most O(logN) books need to be moved with high 
probability* to make room for a new book.  

* Probability >1-1/poly(N), N=#books.  



But what if Library buys many copies of…. 

•  Bender and  Orszag 
•  Bender and Orszag, 2nd Ed. 
•  Bender, and Orszag, 3rd Ed. 

•  Bender and Orszag, 500th Ed. 
•  Books by other Benders 
•  Bender & Orszag, Volume II (?) 

•  Now there’s a bolus of books on in one place.  
Can we still tiny shelving costs?    

… 
… 



But what if Library buys many copies of…? 

•  Bender and  Orszag 
•  Bender and Orszag, 2nd Ed. 
•  Bender, and Orszag, 3rd Ed. 

•  Bender and Orszag, 500th Ed. 
•  Books by other Benders 
•  Bender & Orszag, Volume II (?) 

•  Now there’s a bolus of books on in one place.  
Can we still tiny shelving costs?    

… 
… 



But what if Library buys many copies of…. 

•  Bender and  Orszag 
•  Bender and Orszag, 2nd Ed. 
•  Bender, and Orszag, 3rd Ed. 

•  Bender and Orszag, 500th Ed. 
•  Books by other Benders 
•  Bender & Orszag, Volume II (?) 

•  Now there’s a bolus of books on in one place.  
Can we still tiny shelving costs?    

… 
… 



But what if Library buys many copies of…. 

•  Bender and  Orszag 
•  Bender and Orszag, 2nd Ed. 
•  Bender, and Orszag, 3rd Ed. 

•  Bender and Orszag, 500th Ed. 
•  Books by other Benders 
•  Bender & Orszag, Volume II (?) 

 Now there’s a bolus of books on in one place.  
Can we still support tiny shelving costs?    

… 
… 



But what if Library buys many copies of…. 

•  Bender and  Orszag 
•  Bender and Orszag, 2nd Ed. 
•  Bender, and Orszag, 3rd Ed. 

•  Bender and Orszag, 500th Ed. 
•  Books by other Benders 
•  Bender & Orszag, Volume II (?) 

 Now there’s a bolus of books on in one place.  
Can one still maintain small shelving costs?    

… 
… 



Insertions into Array with Gaps 
•  Dynamically maintain     elements sorted in 

memory/on disk in a         -sized array 

•  Objective: Minimize amortized (technical 
form of ave)  # of elts moved per update. 

•  Idea: rearrange elements & gaps to accommodate 
future insertions 



Actually Two Objectives 

•  Minimize # elements moved per insert. 

•  Minimize # block transfers per insert.  

•  Disk Access Model (DAM) of Computer 
–  Two levels of memory 
–  Two parameters:  

 block size B, memory size M.   

Remember that I’m a computer scientist…. 



•  (Worst-case) Inserts/Deletes:  
–   O(log2N ) amortized element moves  
–   O(1+(log2N )/B) amortized memory transfers 

•  Scans of k elements after given element: 
–   O(1+k/B) memory transfers 



Head insert: 
O(log2N) 

Random 
insertion 

Problem: a worst case for PMA is sequential inserts, but this 
is a common case for databases.  Industrial data structures 
(Oracle, TokuDB) are optimized for sequential inserts. 



An Adaptive PMA 
[Bender, Hu 2007] 

•  Same guarantees as PMA:  
   O(log2N ) element moves per insert/delete 
    O(1+(log2N )/B) memory transfers 

•  Optimized for common insertion patterns: 
   insert-at-head  (sequential inserts)  
   random inserts 
   bulk inserts   (repeatedly insert O(N b) elements in 

                           random position,  0≤b ≤1) 
Guarantees: 
    O(logN ) element moves 
    O(1+(logN )/B) mem transfers  



Sequential Inserts 
Inserts “hammer” on one part of the array. 



   Random Inserts 
Insertions are after random elements. 



Sample Applications 

Maintain data physically in order on disk 
•  Traditional and “cache-oblivious” B-trees 

–  Core of all databases and file systems 
•  My startup Tokutek 
•  Even an online dating website 



•  Try to insert in log N –sized interval. 
•  If interval already full, rebalance  smallest 
  enclosing interval within thresholds. 



•  Try to insert in leaf interval. 
•  If interval full, rebalance  smallest enclosing 
  interval within thresholds. 



Analysis Idea: O(log2N ) amortized 
element moves per insert  

•   O(logN ) amort. moves to insert into interval 
–  Amortized analysis: Charge rebalance of interval u to 

inserts into child interval v 
•   Insert in O(logN ) intervals for insert in PMA 







Analysis Summary 

•  Charge rebalance cost of u  to inserts into v 
–  After rebalance v  within threshold of parent u 

•  Amortized cost of O(logN ) to insert into u 
•  But each insert is into O(logN ) intervals 

•  Total: O(log2N ) amortized moves 
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Idea of Adaptive PMA 
⇒ But no working-set property of the “right” predicto 
•  Adaptively remember elements that have many 

recent inserts nearby.  
•  Rebalance unevenly.  

Add extra space near these volatile elements.  

•  This strategy overcomes a Ω(log2N ) lower bound 
[Dietz, Sieferas, Zhang 94] for “smooth” rebalances 



Why O(log2N ) Can Be Improved in 
the Common Case. 
To guarantee O(log2N ), we only need….  

  Rebalance Property: After a rebalance involving v, 
v  is within parent u ’s density threshold.  

Summary: As long as v  is within u ’s threshold, it can 
be sparser or denser than t ’s density thresholds. 



Why O(log2N ) Can Be Improved in 
the Common Case. 
To guarantee O(log2N ), we only need….  

  Rebalance Property: After a rebalance involving v, 
v  is within parent u ’s density threshold.  

Summary: Remarkable that this is good enough.  
Only large rebalances have slop and most are small. 



How to Remember Hot 
Elements Adaptively 

•  Maintain an O(logN )-sized predictor, which 
keeps track of PMA regions with recent inserts 
–  O(logN ) counters, each up to O(logN ).  
–  Remembers up to O(logN ) hotspot elements. 
–  Tolerates “random noise” in inputs. 

⇒ Good for many distributions. 
⇒ But no working-set property of the “right” predictor. •  (Generalization of how to find majority element in 
an array with a single counter.) 

•  Rebalance to even out weight of counters, 
while maintaining rebalance property. 



Summary 
•  Insertion sort with gaps  

–  LibrarySort [Bender,Farach,Colton,Mosteiro ‘04] (+ Wikipedia entry)  
•  Worst-possible inserts  

–  PMA [Bender,Demaine,Farach-Colton ’00,’05] 
–  Cache-oblivious B-trees and other data structures 

•  Adapt to common distributions  
–  APMA [Bender,Demaine,Farach-Colton ’00,’05] 

•  Implementation of cache-oblivious data structures   
–  Tokutek 



•  Is it practical to keep data physically 
in order in memory/on disk? 

Speaking for B-trees… 
I believe yes. 



Vista Panoramica de la Platica 


